Rational series for multiple zeta and log gamma functions

نویسنده

  • Paul Thomas Young
چکیده

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L-functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-known properties of these functions. As corollaries many special values of these transcendental functions are expressed as series of higher order Bernoulli numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On p-adic multiple zeta and log gamma functions

We define p-adic multiple zeta and log gamma functions using multiple Volkenborn integrals, and develop some of their properties. Although our functions are close analogues of classical Barnes multiple zeta and log gamma functions and have many properties similar to them, we find that our p-adic analogues also satisfy reflection functional equations which have no analogues to the complex case. ...

متن کامل

On Eulerian Log-Gamma Integrals and Tornheim–Witten Zeta Functions

Stimulated by earlier work by Moll and his coworkers [1], we evaluate various basic log Gamma integrals in terms of partial derivatives of Tornheim– Witten zeta functions and their extensions arising from evaluations of Fourier series. In particular, we fully evaluate

متن کامل

Archimedean Zeta Integrals for Unitary Groups

We prove that certain archimedean integrals arising in global zeta integrals involving holomorphic discrete series on unitary groups are predictable powers of π times rational or algebraic numbers. In some cases we can compute the integral exactly in terms of values of gamma functions, and it is plausible that the value in the most general case is given by the corresponding expression. Non-vani...

متن کامل

RANK PROBABILITIES FOR REAL RANDOM N x N x 2 TENSORS

We prove that the probability PN for a real random Gaussian N ×N ×2 tensor to be of real rank N is PN = (Γ((N + 1)/2))N/G(N + 1), where Γ(x), G(x) denote the gamma and Barnes G-functions respectively. This is a rational number for N odd and a rational number multiplied by πN/2 for N even. The probability to be of rank N + 1 is 1− PN . The proof makes use of recent results on the probability of ...

متن کامل

Expressions for the entropy of binomial-type distributions

We develop a general method for computing logarithmic and log-gamma expectations of distributions. As a result, we derive series expansions and integral representations of the entropy for several fundamental distributions, including the Poisson, binomial, beta-binomial, and negative binomial distributions. Our results also establish connections between the entropy functions and to the Riemann z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013